练习
Give an example of a martingale with and for . This example shows that it is not enough to have in Theorem 4.3.1.
证明
令 。若 ,则 ;若 ,则 . 可以由 Borel-Cantelli 引理得到,而 是因为 然后用 Borel-Cantelli 引理。 是因为 用 Borel-Cantelli 引理,把这部分排除掉剩余部分满足 a.s..
练习
(Assumes familiarity with finite state Markov chains.) Fine tune the example for the previous problem so that and , where is your favorite number in , i.e., you are asked to do this for one value of that you may choose. This example shows that a martingale can converge in distribution without converging a.s. (or in probability).
证明
TODO
练习
Let and be positive integrable and adapted to . Suppose , with a.s. . Prove that converges a.s. to a finite limit. Hint: Let , and stop your supermartingale at time .
证明
首先构造上鞅
. 由 知道
是上鞅。对
,令停时 那么
,那么 是上鞅,并且 a.s. 收敛,那么
在
上 a.e. 收敛。令
得到
在
上 a.s. 收敛,那么
a.s. 收敛。
练习
Let . Use the Borel-Cantelli lemmas to show that
证明
令
为互相独立的事件列,且
,那么由 Borel-Cantelli 引理知道 这等价于 即
练习
Show
implies
证明
记
,令 那么由
和上一题结论知道 从而
练习
Check by direct computation that the in Example 4.3.7 is a martingale. Show that if we drop the condition and set when , then .
证明
对第一问,只要证明
,也即 由于
可以由有限个元素生成,无妨设
. 那么 从而得证。 对第二问,仍然考虑上式。
处等号应改成
,因为等式右侧只包含所有
的区间对应的项。
练习
Apply Theorem 4.3.5 to Example 4.3.7 to get a "probabilistic" proof of the Radon-Nikodym theorem. To be precise, suppose is countably generated (i.e., there is a sequence of sets so that ) and show that if and are -finite measures and , then there is a function so that . Before you object to this as circular reasoning (the Radon - Nikodym theorem was used to define conditional expectation!), observe that the conditional expectations that are needed for Example 4.3.7 have elementary definitions.
证明
由
-有限性,可以不妨设
是概率测度。令
分别为
在
上的限制。那么有
成立,再令
,那么由定理 4.3.5 知道 由于
知道
对
的 Lebesgue 分解存在且奇异部分为
,从而 从例 4.3.7 也可以得出同样的结论。
For the next three exercises, suppose are concentrated on and have , .
练习
- Use Theorem 4.3.8 to find a necessary and sufficient condition for .
- Suppose that . Show that in this case the condition is simply .
证明
对于第一问,首先有 然后直接代入定理得到等价条件 第二问 TODO。
练习
Show that if and in the previous exercise then . This shows that the condition is not sufficient for in general.
证明
直接由下一问可得。
练习
Suppose . Show that is sufficient for in general.
证明
不妨设
来去除绝对值。由
知道 其中
表示敛散性相同。同理可以得到 那么两式相加直接得到
练习
Show that if then it is and hence
证明
令
,那么 那么
. 之后是容易证明的。
练习
Let be a branching process with offspring distribution , defined in part d of Section 4.3, and let . Suppose has . Show that is a martingale and use this to conclude .
证明
先证鞅性,有 对于第二问,由
是非负鞅可以设
,下分析
的分布。考虑集合
,此时
,而在
上,一定有
从而
,且
,从而
. 那么只要证明
. 这是容易的,由控制收敛定理得到
.
练习
Galton and Watson who invented the process that bears their names were interested in the survival of family names. Suppose each family has exactly 3 children but coin flips determine their sex. In the 1800s, only male children kept the family name so following the male offspring leads to a branching process with , , , . Compute the probability that the family name will die out when .
证明
直接解方程 解出
.